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ABSTRACT ARTICLE HISTORY

As a valid metric of metric-measure spaces, Gromov-Wasserstein (GW) distance has shown the potential Received September 2022
for matching problems of structured data like point clouds and graphs. However, its application in practice Accepted December 2022
is limited due to the high computational complexity. To overcome this challenge, we propose a novel

importance sparsification method, called Spar-GW, to approximate GW distance efficiently. In particular, =~ KEYWORDS .
instead of considering a dense coupling matrix, our method leverages a simple but effective sampling :Element—W|se Samlpl'n_g;
strategy to construct a sparse coupling matrix and update it with few computations. The proposed Spar- mportance sampling;

X R . . . . . Sinkhorn-scaling algorithm;
GW method is applicable to the GW distance with arbitrary ground cost, and it reduces the complexity Unbalanced 9a9

from O(n*) to O(n?*?) for an arbitrary small § > 0. Theoretically, the convergence and consistency of Gromov-Wasserstein
the proposed estimation for GW distance are established under mild regularity conditions. In addition, this distance

method can be extended to approximate the variants of GW distance, including the entropic GW distance,

the fused GW distance, and the unbalanced GW distance. Experiments show the superiority of our Spar-GW

to state-of-the-art methods in both synthetic and real-world tasks. Supplementary materials for this article

are available online.

1. Introduction term based on the Bergman divergence (Xu et al. 2019), the
subproblem in each iteration will be strictly convex and can
be solved via the Sinkhorn-scaling algorithm (Sinkhorn and
Knopp 1967; Cuturi 2013). Another strategy is computing
sliced Gromov-Wasserstein distance (Titouan et al. 2019b),
which projects the samples to different 1D spaces and calculates
the expectation of the GW distances defined among the
projected 1D samples. More recently, to further reduce the
computational complexity, more variants of the GW distance
have been proposed, which achieve acceleration via imposing
structural information (e.g., tree (Le, Ho, and Yamada 2021),
low-rank (Xu, Luo, and Carin 2019; Sato et al. 2020; Chowdhury,
Miller, and Needham 2021), and sparse structure (Xu, Luo, and
Carin 2019)) on the ground cost £, the coupling matrix T, or
both (Scetbon, Peyré, and Cuturi 2022). However, most of these
methods mainly focus on the GW distance using decomposable
ground cost functions (Peyré, Cuturi, and Solomon 2016).
Moreover, some of them are only applicable for specific data
types (e.g., point clouds in Euclidean space (Titouan et al.
2019b) and sparse graphs with clustering structures (Xu, Luo,
and Carin 2019; Blumberg et al. 2020)), and they are not able
to approximate the original GW distance. See Table 1 for an
overall comparison. Therefore, it is urgent to develop a new
approximation of the GW distance that has better efficiency and
applicability.

Gromov-Wasserstein (GW) distance, as an extension of classical
optimal transport distance, is originally proposed to measure
the distance between different metric-measure spaces (Sturm
2006; Mémoli 2011). Recently, it attracts wide attention due
to its potential for tackling challenging machine learning tasks,
including but not limited to shape matching (Mémoli 2011; Ezuz
etal. 2017; Titouan et al. 2019b), graph analysis (Chowdhury and
Mémoli 2019; Xu et al. 2019; Titouan et al. 2019a; Chowdhury
and Needham 2021; Brogat-Motte et al. 2022; Vincent-Cuaz
et al. 2022; Xu et al. 2023), point cloud alignment (Peyré,
Cuturi, and Solomon 2016; Alvarez-Melis and Jaakkola 2018;
Alaux et al. 2019; Blumberg et al. 2020), and distribution
comparison across different spaces (Yan et al. 2018; Bunne
et al. 2019; Chapel, Alaya, and Gasso 2020; Gong, Nie, and Xu
2022).

Despite the wide application, calculating the GW distance
is NP-hard, which corresponds to solving a non-convex non-
smooth optimization problem. To bypass this obstacle, many
efforts have been made to approximate the GW distance with
low complexity. One major strategy is applying the conditional
gradient algorithm (or its variants) to solve the GW distance
iteratively in an alternating optimization framework (Peyré,
Cuturi, and Solomon 2016; Titouan et al. 2019a). By introducing
an entropic regularizer (Solomon et al. 2016) or a proximal
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Table 1. Comparison for various GW distance approximation methods on their time complexity, assumptions imposed on their ground cost functions and coupling matrices,

and required data types.

Method Time O(+) Ground cost £ Coupling T Data type
Entropic GW (Peyré, Cuturi, and Solomon 2016) n Decomposable - -
Sliced GW (Titouan et al. 2019b) n? €5 loss - Points
S-GWL (Xu, Luo, and Carin 2019) n? log(n) Decomposable Sparse & low-rank -

AE (Sato et al. 2020) n? Iog(nz) p-power (p € Z4.) - -
FlowAlign (Le, Ho, and Yamada 2021) n? £ loss Tree-structure Points
Linear-time GW (Scetbon, Peyré, and Cuturi 2022) ra(r1 +r)n £ loss Low-rank Points
SaGroW (Kerdoncuff, Emonet, and Sebban 2021) n? (s' + log(n)) - - -
Spar-GW (Proposed) n? 42 - - -

1un

means no constraints. For the column of data type, “-” means the data can be sample points and/or their relation matrices.

2 For the column of time complexity, the time of calculating relation matrices of points is also included.

3

n represents the sample size. For Linear-time GW, rq and r, are the assumed ranks of relation matrices and coupling matrix, respectively; for SaGroW, s’ denotes the

number of sampled matrix; for Spar-GW, s denotes the number of sampled elements.

Major contribution. In this article, we propose a random-
ized sparsification method, called SPAR-GW, to approximate the
GW distance and its variants. In particular, during the itera-
tive optimization of the GW distance, the proposed SPAR-GW
method leverages an importance sparsification mechanism to
derive a sparse coupling matrix and the corresponding kernel
matrix. Replacing dense multiplications with sparse ones leads
to an efficient approximation of GW distance with O(n? + s?)
time complexity, where s is the number of selected elements
from an n x n kernel matrix. The SPAR-GW is compatible
with various computational methods, including the proximal
gradient algorithm for original GW distance and the Sinkhorn-
scaling algorithm for entropic GW distance, and it is capable
of arbitrary ground cost. In theory, we show the proposed esti-
mator is asymptotically unbiased when s = O(n!*?) for an
arbitrary small § > 0, under some regularity conditions. Table 1
highlights the advantage of our method. Moreover, this method
can be extended to compute the variants of GW distance, for
example, a straightforward application to approximate the fused
GW (FGW) distance and a nontrivial extension called SPAR-
UGW to approximate the unbalanced GW (UGW) distance.
Experiments show the superiority of the proposed methods to
state-of-the-art competitors in both synthetic and real-world
tasks.

The remainder of this article is organized as follows. We
start in Section 2 by introducing computational optimal trans-
port and GW distance. In Section 3, we develop the sampling
probabilities and provide details of our main algorithm. The
theoretical properties of the proposed estimator are presented
in Section 4. Section 5 extends the proposed method to unbal-
anced problems. We examine the performance of the proposed
algorithms through extensive synthetic and real-world datasets
in Section 6. Technical proofs and more experimental results are
provided in the supplementary material.

2. Background

In the following, we adopt the common convention of using
uppercase boldface letters for matrices, lowercase boldface let-
ters for vectors, and regular font for scalars. We denote nonneg-
ative real numbers by R and the set of integers {1, . . ., n} by [n].
We use 1,, and 0,, to denote the all-ones and all-zeroes vectors
in R”, respectively. For a matrix A = (Aj), its spectral norm

(i.e., the largest singular value) and Frobenius norm are denoted
as |A]l2 and ||A||p, respectively. The condition number of A is
defined as ||Al|2/0min(A), where opin (+) stands for the smallest
singular value. We denote by exp(A) the matrix with entries
exp(A;j). For two matrices A and B of the same dimension, we
denote their Frobenius inner product by (A,B) =}, i AiiBij-

2.1. Computational Optimal Transport

Consider two samples X = {x;}/” and Y = {y]- ;l=1 that are
generated from the distributions a € A" land b € A"
respectively, where A"~! represents the (n—1)-Simplex. When a
and b lie in the same space, optimal transport (OT) and its asso-
ciated Wasserstein distance (Villani 2009) are used extensively
to quantify the discrepancy between these two probability dis-
tributions. The modern Kantorovich formulation (Kantorovich
1942) of OT writes

W(a,b) =

min

(M, T), (1)
Tell(a,b)

where M € R™*" is a given distance matrix, [1(a,b) = {T €
R Tl, = aT"'1, = b} is the set of admissible
coupling matrices, that is, all joint probability distributions with
marginals a, b, and the (4, j)th entry of T represents the amount
of probability mass shifted from i to j. The solution to (1) is called
the optimal transport plan. If M is a distance matrix of order p,
Wy(-, ) = W(, /P is called the p-Wasserstein distance.
Despite the wide applications, the computational complexity
of directly solving (1) using a linear program grows cubically as
m or n increases (Brenier 1997; Benamou, Brenier, Y., and Guit-
tet 2002). To approximate the optimal transport plan efficiently,
Cuturi (2013) added an entropic regularization term on (1),
which leads to a strongly convex and smooth problem
min

(M, T) + eH(T), (2)
Tell(a,b)

where ¢ > 0 is a regularization parameter and H(T) =
(T,log T) is the negative Shannon entropy of T. By introducing
a kernel matrix K := exp(—M/¢), it is known that the solution
to (2) is a projection onto I1(a, b) of K (Peyré and Cuturi 2019).
Therefore, the problem (2) can be solved by using iterative
matrix scaling (Sinkhorn and Knopp 1967), called the Sinkhorn-
scaling algorithm (Cuturi 2013); see Step 5 in Algorithm 1
for details. The Sinkhorn-scaling algorithm enables researchers
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to approximate the OT solution efficiently, and thus has been
extensively studied in recent years (Genevay et al. 2019; Lin,
Ho, and Jordan 2019; Scetbon and Cuturi 2020; Liao et al.
2022a, 2022b). There also exist projection-based methods to
approximate the Wasserstein distance (Bonneel et al. 2015; Meng
et al. 2019; Deshpande et al. 2019; Li et al. 2022). We refer to
Nadjahi (2021) and Zhang et al. (2022) for recent reviews.

2.2. Computational GW Distance

When a and b lie in different spaces, the distance matrix M
is unavailable and thus optimal transport can not be used. As
a replacement, the Gromov-Wasserstein distance is applicable
to measuring the discrepancy between two samples located in
different sample spaces by comparing their structural similarity.
Similar to Wasserstein distance, the intuition of GW distance is
still to minimize the transportation effort, but GW only relies on
the structure in each space separately.

In particular, consider two relation matrices CX = (C}) €
R™™M and CY = (C;/) € R™" each of which can be
the distance/kernel matrix defined on a sample (Mémoli 2011;
Peyré, Cuturi, and Solomon 2016), or the adjacency matrix of a
graph constructed by the sample (Xu et al. 2019; Titouan et al.
2019a). Let £ : R x R +— R be the ground cost function,
for example, the ¢; loss (i.e., L(x1,x2) = |x1 — x2]|), the £,
loss (ie., L(x1,%3) = (x1 — x2)?), and the Kullback-Leibler
(KL) divergence (i.e., L(x1,x2) = x1log(x1/x2) — x1 + x2).
The GW distance is defined as the following non-convex non-
smooth optimization problem:

GW ((C¥,a), (C", b)) (3)

. X ~Y
= mlnTE]'[(a)b) Zi Vi »C (Cii/’ C]J/) Tl'jTi/j/

= minrenap) (L(CY,CY) @ T, T)
= (£(CX,CcY) @ T, T%),

where E(Cfi(,, C ]?,) measures similarity between pairs of points
or graphs, Tj; is the (i, j)th entry of the coupling matrix T,
and then the term £ (Cff,, C];/,) T;iTyy represents the transport

cost between two pairs (3,i') and (j,j'). As shown in (3), this
optimization problem can be written in a matrix format (Peyré,
Cuturi, and Solomon 2016), where £(C¥, CY) is a tensor, and
LCX5CH®T = (X L(C, c}f.,)Ti,j/)i,j] e R™" s a
tensor-matrix multiplication. As before, I1(a, b) is the set of
admissible coupling matrices, and the solution to problem (3),
denoted as T*, is called the optimal transport plan.

In general, this optimization problem can be solved in an
iterative framework: at the rth iteration, the coupling matrix T
is updated via solving the following subproblem:

T .= arg mintenap (L(CY,CH @ TV, T) +  eR(T)
— ~——

C(T™) Optional Reg.

(4)

Here, C(T) is a cost matrix determined by the previous cou-
pling matrix T, R(T) is an optional regularizer of T, whose
significance is controlled by the weight ¢ > 0. The subproblem
is essentially the (regularized) optimal transport problem (1)

Algorithm 1 Computation of GW distance

1: Input: Sample distributions a, b, relation matrices CX, CY,
ground cost function £, regularization parameter £, number
of outer/inner iterations R, H

2: Initialize T® = ab’

3 Forr=0toR — 1:

4: Construct a kernel matrix: O(m2n?)

a) Compute the cost matrix C(TM) = £(cX, ¢’y TN

® .
by KO = | SRS TR = KL(TIT?)
exp(— T2 if R(T) = H(T)

5. Sinkhorn-scaling: TC+D = SinkHORN(a, b, K™, H)

O(Hmn)

a) Initialize u® = 1,,,v® =1,

b) Forh=0to H—1: uD = g (KDv®), yhtD) —
b (K" Tuh+D)

¢) TC*+D = diag(u™)K® diag(v'H))

6 Output: GW = (C(T®), T®) O(m?*n?)

or (2). Without R(T), the problem in (4) becomes a constrained
linear programming given T("), and this is often solved via the
conditioned gradient followed by line-search (Titouan et al.
2019a). To improve the efficiency of solving the problem, Xu
etal. (2019) implements R(T) as a Bregman proximal term, that
is, the KL-divergence KL(T||T®™) = (T, log T —log T®), which
leads to a proximal gradient algorithm (PGA) and improves the
smoothness of T’s update. When the regularizer is implemented
as the entropy of T, that is, R(T) := H(T), the problem in (4)
becomes an entropic optimal transport problem and solving
it iteratively leads to the approximation of GW distance or
entropic GW distance (Peyré, Cuturi, and Solomon 2016). Note
that, when using the Bregman proximal term or the entropic
regularizer, the problem in (4) can be solved via the Sinkhorn-
scaling algorithm (Sinkhorn and Knopp 1967; Cuturi 2013),
and accordingly, Algorithm 1 shows the computational scheme
of the GW distance, where © and @ represent element-wise
multiplication and division, respectively. When R(T) = H(T),
Algorithm 1 can also be used to compute the entropic GW
distance by modifying the output to GW, = (C(T®), T®) 4
eH(TW®),

2.3. Problem Statement

The computational bottleneck of Algorithm 1 is the computa-
tion of the cost matrix C(T), which involves a tensor-matrix
multiplication (i.e., the weighted summation of mn matrices of
size m x n) with time complexity O(m*n?). Although the com-
plexity can be reduced to O(n*m + m?n) when the ground cost
L is decomposable, that is, £ can be decomposed as L(x1,x2) =
fi(x1) + fa(x2) — h1(x1)h2(x2) for functions (fi, f2, 1, ha), like
the €, loss or the KL-divergence (Peyré, Cuturi, and Solomon
2016). However, this setting restricts the choice of the ground
cost and thus is inapplicable for GW distances in more general
scenarios.
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Figure 1. (a) An illustration of our Spar-GW. The nonzero elements of each matrix are labeled with colors. The arrows between T’ are applied when using the proximal

gradient algorithm. (b) An illustration of the computation of 5(?")) in the rth iteration.

3. Importance Sparsification for GW Distance
3.1. Importance Sparsification

According to the analysis above, to approximate the GW dis-
tance efficiently, the key point is constructing a sparse C(T) with
low complexity as a surrogate for C(T), which motivates us to
propose the SPAR-GW algorithm. Replacing the C(T) with a
sparse C(T) results in two benefits. First, C(T) is associated with
a sparse kernel matrix K, which enables us to use sparse matrix
multiplications to accelerate the Sinkhorn-scaling algorithm,
and the output is a sparse transport plan T with the same sparsity
structure as K, that is, T;j = 0if Kj; = 0, as shown in Figure 1(a).
Second, when T is sparse, C(T) can be calculated by summing
s < mn sparse matrices instead of mn dense ones, and each
of these sparse matrices contains at most s nonzero elements, as
shown in Figure 1(b). Therefore, the principle of our SPAR-GW
algorithm is leveraging a simple but effective importance sparsi-
fication mechanism (i.e., constructing the sampling probability
matrix P in Figure 1(a)) to derive an informative sparse C(T),
and accordingly, achieving an asymptotically unbiased estimate
of the GW distance.

Recall that the GW distance in (3) can be rewritten as a
summation GW = Zi)j T;;Cl?;, where C; is the (i, j)th element
of C(T*). According to the idea of importance sampling (Liu
1996, 2008), this summation can be approximated by a weighted
sum of scomponents, thatis, GW ~ ;s T;»C;Jf/(spij), where
S = {(i,j1)}]_, represents the set of s pairs of indices selected
by the sampling probability {p;;} i je[m)x[n]- Ideally, the optimal
sampling probability, which leads to the minimum estimation
variance, satisfies p?} [0 T;Cf]‘ Because neither the optimal T;J‘.
nor Ci’; is known beforehand, we propose to use a proper upper
bound for T;;C;; as a surrogate. In particular, for the cost C};, we
impose a mild assumption on it: 3¢y > 0 such that Vi, , C;‘- < ¢p.
Moreover, based on the constraint that T* € IT(a, b), we have
T;; < g;and Tl?; < bj, and thus T;;- < \/;b] Combining these
inequalities, we use the sampling probability as

a,-bj
Zi,j v “ibj’

1<i<m,

T;;C;; < ¢ tl,’bj = pij=

I1<j<n (5

Intuitively, T;; can be large when both a; and b; are relatively
large; otherwise, T} should be small if either a; or bj is small.
Therefore, from the perspective of importance sampling, it is
natural to take the geometric mean of a; and b; as our sampling
probability.

3.2. Proposed Algorithm

Let P be the sampling probability matrix such that the (i, j)th
element equals the p;; in (5). Given P, we first construct the index
set S by sampling s pairs of indices, and then, build s matrices
{f,-.j.}(i j)eS> whose elements are

L

. X, CY) (T
ﬁw={§m”q”101)es for (i,j) €S, (6)

otherwise

As shown in Figure 1(b), in the rth iteration, we construct a
sparse coupling matrix T, with i-(jr) = 0if (4,j) ¢ S,and com-
pute the sparse cost matrix Cl (T(’)) => (ij)es fij.i"fjr). Accord-
ingly, we derive the sparse kernel matrix K with nonzero
elements

I~<l.(j” = exp(—CN,j/a)Ti(j” /(spi) or exp(—Cjj/e)/(spi)

only for (i,j) € S, where the adjustment factor sp;; ensures the
unbiasedness of the estimation. We then calculate the coupling
matrix TC+D via applying the Sinkhorn-scaling algorithm to
the sparse T™) and K. Algorithm 2 summarizes the SPAR-GW
algorithm.

Computational cost. Generating the sampling probability
matrix P requires O(mn) time. In each iteration, calculating
C(T™) involves the summation of s matrices, and each of them
contains only s nonzero elements, resulting in O(s?) time. For
Step 7, the Sinkhorn-scaling algorithm requires O(Hs) time by
using sparse matrix multiplications. Calculating GW distance
using the sparse T®) requires O(s?) operations. Therefore, for
Algorithm 2, its overall time complexity is O(mn -+ Rs> + RHs +
s2), which becomes O(mn + s2) when R and H are constants,
and its memory cost is O(mn). When m = O(n), we obtain the
complexity shown in Table 1.

Applicability for entropic GW distance and fused GW distance.
As shown in Algorithm 2, our algorithm can approximate the
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Algorithm 2 SPAR-GW algorithm

1: Input: Sample distributions a, b, relation matrices CX, CY,
ground cost function £, regularization parameter £, number
of selected elements s, number of outer/inner iterations R, H

2: Construct the sampling probability P defined by (5) O(mn)

3: Generate an iid subsample of size s using P, let S =
{(i},/)};_ be the index set

4 Initialize T = 0,,,%» and 7"1»(1-0) =a;bjif (i,j) € S

5 Forr=0toR — 1:

6: Construct a sparse kernel matrix: 0(s%)

a) Compute C (T(r)) Z(i jes f,-.j.i"i(jr)
replace its 0’s at S with 0o’s

using (6), and

by &0 _ [ ST 0T 0 ) R = KLTITY)
exp(— 0™ ¢ (sP) if R(T) = H(T)
7: Sinkhorn-scaling (with sparse inputs): Tr+D =
SINKHORN(a b, K", H) O(Hs)

& Output: GW = 3 pnes £ (G5 CF ) TVTR o)

entropic GW distance as well. Moreover, it is natural to extend
the algorithm to approximate the fused Gromov-Wasserstein
(FGW) distance (Titouan et al. 2019a; Vayer et al. 2020). In par-
ticular, when computing the FGW distance, the cost matrix C(T)
takes the direct comparison among the samples into account,
and our importance sparsification mechanism is still applicable.
Details for the modified algorithm are relegated to supplemen-
tary material.

4. Theoretical Results

This section shows the convergence and consistency of GW
obtained by Algorithm 2 under R(T) = H(T). To ease the
conversation, we focus on the case that m = n, and the extension
to unequal cases is straightforward. Let (T, T') € [1%(a, b). We
define

N Y /
EMT) =) L (ckcp) Tty
G(T) := E(T,T) — minperap) E(T,T).

For notation simplicity, we overload £(T, T) as £(T). Follow-
ing Kerdoncuff, Emonet, and Sebban (2021), our goal is to
provide a guarantee on the convergence of G(T), because T is
a stationary point of £(T) if and only if G(T) = 0 (Reddi et al.
2016). In addition, we define K" = exp(—C (T(')) /&), which is
the unsampled counterpart to K at the rth iteration. Consider
the following regularity conditions.

(H.1) The relation matrices CX, CY are symmetric;

(H.2) The ground costis bounded, thatis,0 < £(C§,, C];(,) < 2B
for a constant B > 0;

(H.3) |IKP |y = n*/c; for constants 1/2 < o < land ¢; > 0,
and the condition number of K" is positive and bounded
byc; > 0,foranyr < R—1;

(H4) pjj > c3/n? for a constant c3 > 0;

(HS5) s > cqn® 10g4(n) for constants ¢y = 810g4(2)/(C3 log4
(1+¢€))ande > 0.

Conditions (H.1)-(H.3) are natural. Condition (H.4) indicates
that the sampling probabilities could not be too small, requiring
pij to be at the order of O(1/n*). The order can always be
satisfied by linear interpolating between the proposed sampling
probability and the uniform sampling probability. Such a shrink-
age strategy is commonly used in subsampling literature (Ma,
Mahoney, and Yu 2015; Yu et al. 2022). Condition (H.5) requires
s to be large enough. For a general case that [|[K” ||, = O(n), that
is, « = 1, condition (H.5) can be achieved when s = O(n'1?%)
foran arbitrary small § > 0. Such order indicates we only need to
compute around n? elements from the entire tensor that contains
n* elements.

We now provide our main convergence result, whose proofs
are provided in supplementary material.

Theorem 1. Under the conditions (H.1)-(H.5), assume that
Rexp (—16log*(n)/€*) — 0 for some e > 0,andn > 76.
The following bound holds in probability

~ E(T®Y _ g(T®R-D 3-20
GEA®RD) < & ) — & ) + 67262 + €)crca, | -
2 c3$
+ elog(n) + Bn? | T® — TR=D2, 7)

Consider the upper bound in Theorem 1. The second term on
the right-hand side of (7) results from importance sparsification.
Under the common condition that « = 1, it tends to zero

when s = On!'*®) as n — 0. The third term ¢log(n) is
caused by the regularization mechanism, which goes to zero
when ¢ = o(log_l(n)). The remaining terms are due to the

iterative scheme in Algorithm 2. Theorem 1 indicates that the
estimation error of the proposed estimator decreases when the
regularization parameter ¢ decreases or the subsample size s
increases. We provide the following corollary to show the con-
sistency of the proposed estimator.

Corollary 1. Suppose the conditions of Theorem 1 hold with
« = 1. Further suppose Algorithm 2 converges with || T® —
TRD||p < ¢5/n3/2*7 for some c5, > 0. When s = O(n!*?)
forany § > Oand ¢ = o(log_l(n)), G(T(R Dy - 0in
probability, as n — oo.

The local stationary convergence of Algorithm 2 implies T®
and TR will get closer and closer with the increase of R.
Therefore, for any given n, we can set the assumption |IT® —
T®D||p < c5/n32t1 as the stopping criterion, which can be
naturally satisfied for a relatively large R.

5. Importance Sparsification for UGW Distance
5.1. Unbalanced GW Distance

In this section, we extend the SPAR-GW algorithm to approx-
imate the unbalanced Gromov-Wasserstein (UGW) distance.
Similar to the unbalanced optimal transport (UOT) (Liero,
Mielke, and Savaré 2016; Chizat et al. 2018a, 2018b, 2018c),
UGW distance is able to compare metric-measure spaces
endowed with arbitrary positive distributions a € R, b €
R% (Séjourné, Vialard, and Peyré 2021; Kawano and Mason
2021; Luo et al. 2022). Following the definition in Séjourné,




Vialard, and Peyré (2021), UGW distance relaxes the marginal
constraints via the quadratic KL-divergence KL®(ullv) =
KL(u ® p|lv ® v), where pt ® v is the tensor product measure
defined by d(1 ® v)(x,y) = du(x)dv(y). In particular, UGW
distance takes the form

UGW ((C¥, a), (C", b))
= Ming g (L(CY,CY) @ T, T) + AKL®(T1,||a)

+ AKL® (T " 1,,1b)
= mingegmon(Can(T), T) + Am(T)KL(T1,]|a)

+ Am(T)KL(T " 1,,|b).

Here, m(T) = ), j Tjj is the total mass of T, Cun(T) :=
L(CX,CY) ® T + E(T) is the cost matrix with E(T) :=
A ilog(Q; Tij/ai) 3; Ty + A3 ;log(}; Tij/by) 3 Tij> and
A > 0 is the marginal regularization parameter balancing the
tradeoft between mass transportation and mass variation. Note
that whena € A" !and b € A""!, UGW distance degenerates
to the classical GW distance as A — oo.

5.2. Proposed Algorithm

To approximate the UGW distance, we update the coupling
matrix via proximal gradient algorithm (PGA) by adding a Breg-
man proximal term (Xie et al. 2020; Xu et al. 2019; Kerdoncuff,
Emonet, and Sebban 2021). Specifically, T is updated as

T+ — argminy g (Can (T, T) + Am(T)KL(T1,||a)
(8)

The subproblem (8) can be solved using unbalanced
Sinkhorn-scaling algorithm (Chizat et al. 2018b; Pham et al.

+ Am(TOYKL(T " 1,,,]|b) + em(TO)KL(T|TT).
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Algorithm 3 SpAR-UGW algorithm

1: Input: Sample distributions a, b, relation matrices CX, CY,
ground cost function L, regularization parameters A, ¢,
number of selected elements s, number of outer/inner iter-
ations R, H

2: Initialize T® = NabT [V m(@m(b)

3 K = exp{—Cun(T?)/(em(T))} © T
O(mn)

4: Construct the sampling probability P defined by (9) O(mn)

5. Generate an iid subsample of size s using P, let S =
{(i},j)};— be the index set

6: Forr =0toR — I _

7. & = em(TM), x = Am(TM)

8: Construct a sparse kernel matrix:

O(m?n?) or

0%

(a) Compute the cost matrix CNun (T‘(r)) = Z(i)j)e S ti.j.i“fjr) +
E(f(r)) using f(zrm~ula (6) and replace its 0’s at S with co’s
(b)ﬁ(r) = exp(— Cun%T(f>)) o rf‘(f) o (sP)

'f‘(r-i—l) _

9: Unbalanced  Sinkhorn-scaling: =
O(Hs)

SINKHORNyoT(a, b, KO, 1,8, H)

(a) Initialize 1w = lm,v(o) =1,
(b) Forh=0toH —1: _ o
u(h+l) — (? @ (K(V)v(h)))k/(A+8)’ v(h—i-l) = b0
(f(‘”Tu(h+1)));\/(A+é)

(¢) TUD = diag(u™)K® diag(v™)

10: T+ = /m(TO) /m(TC+Dy . Tr+D
11: Output: UGW = (£(CY,CY) @ T®,T®) 1 AKLE A1, a) +
AKLE(T®T1,||b) 0(s2)

2020) with the kernel matrix K = exp{—Cun(T"))/(em(T"”))}® and A — o0, SPAR-UGW degenerates to SPAR-GW. Such an

T®; see Step 9 in Algorithm 3 for details. Now the convergent
scaling vectors u € R, v € R’} satisfies that

Ate Ate
i A Ki' : = a; d 2) A
(u;) ( E ; ]v]) a an )

As a result, it holds that

(Zi K,-ju,-) =b.

ree
(i) » Kyjvj < a;y

e Be g ke
wiKij(v) * =bj = () * Kjvp) + = abj,

A e
which follows that Ti’]‘- = uiK;v; < (a,'bj) 2te Ki]?”“. Such an
inequality motivates us to sample with probability

) £
At
(“ihj) 2hte Kij +e

, 1<i<m, 1<j<n

pij = )

- N _&
Erery 2h+e
>i(aib)) P K

Unfortunately, such a probability involves the kernel matrix K,
which requires the unknown coupling matrix T. To bypass the
obstacle, we propose to replace the unknown T with the initial
value T® = ab' //m(a)ym(b), where m(a) = > ;ai and
m(b) = ) .bj are the total mass of a and b, respectively.
Algorithm 3 details the proposed SPAR-UGW algorithm for
approximating UGW distances. Note that when m(a) = m(b)

observation is consistent with the relationship between GW and
UGW.

Computational cost. In Algorithm 3, although calculating K
in Step 3 requires O(m*n?) time, we only need to calculate it
once. Moreover, when L is decomposable, the complexity of
calculating K can be reduced to O(mn) by using the fact that
T© is a rank-one matrix. Therefore, the total time complexity
of SPaR-UGW is O(mn + s?) when R and H are constants, and
L is decomposable.

6. Experiments

In this section, we evaluate the performance of SPAR-GW and
its variants in both distance estimation and graph analysis.

6.1. Synthetic Data Analysis

6.1.1. Approximation of GW and UGW Distances

We compare the proposed SPAR-GW with main competitors
including: (i) EGW, Algorithm 1 with entropic regularization
(Peyré, Cuturi, and Solomon 2016); (ii) PGA-GW, Algorithm 1
with proximal regularization (Xu et al. 2019); (iii) EMD-GW,
that is, EGW with ¢ = 0, but replacing Sinkhorn-scaling
algorithm in EGW with the solver for unregularized OT prob-
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Figure 2. Comparison on estimation error (Top) and CPU time (Bottom). The mean and standard deviation are reported for sampling-based methods.

lems (Bonneel et al. 2011); (iv) S-GWL (Xu, Luo, and Carin
2019), adapted for arbitrary ground cost following Kerdoncuff,
Emonet, and Sebban (2021); (v) LR-GW, the quadratic approach
in Scetbon, Peyré, and Cuturi (2022); (vi) SaGroW (Kerdoncuff,
Emonet, and Sebban 2021). Other methods in Table 1, that is,
Sliced GW (Titouan et al. 2019b), AE (Sato et al. 2020) and
FlowAlign (Le, Ho, and Yamada 2021), are not included as
they fail to approximate the original GW distance. We adopted
the proximal term, that is, KL-divergence, as R(T) in SaGroW
and SPAR-GW. The other choice of regularization term yields
similar results. The regularization parameter ¢ is chosen among
{1,1071,1072,1073} and the result with the smallest distance
w.r.t. each method is presented. For LR-GW, the nonnegative
rank of the coupling matrix is set to [#/207]. For SPAR-GW and
SPAR-UGW, we set the subsample size s 16n. For a fair
comparison, we set the subsample size s' = s?/n?® for SaGroW
to ensure that it has the same sampling budget (i.e., samples
the same number of elements) to SPAR-GW (or SPAR-UGW).
Other parameters of the methods mentioned above are set by
default. To take into account the randomness of sampling-based
methods, that is, SaGroW, SPAR-GW, and SparR-UGW, their
estimations are averaged over 10 runs. All the experiments are
performed on a server with 8-core CPUs and 30GB RAM.

We consider two popular synthetic datasets called Moon
following Séjourné, Vialard, and Peyré (2021), Muzellec et al.
(2020), and Graph following Xu et al. (2019), Xu, Luo, and
Carin (2019). We also consider two other widely used datasets
including the case where the source and target are distributed
in heterogeneous spaces. The results have a similar pattern to
those of Moon and are relegated to supplementary material.
Specifically, for the Moon dataset, marginals are two Gaussian
distributions, N(n/3,n/20) and N(n/2,n/20), supported on n
points in R?. The source and target supported points are respec-
tively generated from two interleaving half circles by sklearn
toolbox (Pedregosa et al. 2011). The matrices CX, CY are defined
using pairwise Euclidean distances in R2. For the Graph dataset,

we first generate one graph with n nodes and power-law degree
distribution from NetworkX library (Hagberg, Schult, and Swart
2008), and then generate the other graph by adding extra edges
randomly with probability 0.2 on the first one. Their degree dis-
tributions are used as two marginals, and the adjacency matrix
of each graph is used as CX,CY. Both £; and ¢, losses are
considered for the ground cost. LR-GW is only capable of the ¢,
loss, and thus its result w.r.t. the £; loss is omitted. To compare
the estimation accuracy w.r.t. different methods, we take PGA-
GW as a benchmark and calculate the absolute error between its
estimation and other estimations of GW distance.

Figure 2 shows the estimation error (top row) and the CPU
time (bottom row) versus increasing sample size n. We observe
that the proposed SPAR-GW method yields almost the smallest
estimation error for the Moon dataset and reasonable errors for
the Graph dataset. Such a difference is because Gaussian distri-
butions in Moon are more concentrated and thus are easier to
sketch by subsamples; while the structure of graphs in Graph is
more complicated, and the transportation between their degree
distributions is also more difficult to approximate by the sub-
sampling technique. As for computational efficiency, SPAR-GW
requires less CPU time than most of the competitors, and such
an advantage is more obvious for the indecomposable ¢; loss.
These observations indicate SPAR-GW is capable of dealing with
large-scale GW problems with arbitrary ground cost.

For unbalanced problems, we set the total mass of a, b to be
units and the marginal relaxation parameter to be A = 1.
We compare SPAR-UGW with: (i) Naive transport plan T =
ab'; (ii) EUGW, entropic regularization in Séjourné, Vialard,
and Peyré (2021); (iii) PGA-UGW; (iv) SaGroW, adapted for
unbalanced problems. We calculate the estimation error w.r.t.
the PGA-UGW benchmark. Other settings are the same as the
aforementioned. From Figure 3, we observe that SPAR-UGW
consistently achieves the best accuracy for the former dataset
and a relatively small estimation error for the latter one, requir-
ing the least amount of time for the ¢, loss. Although the
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Figure 3. Comparison on estimation error (Top) and CPU time (Bottom) w.r.t. UGW distance. The mean and standard deviation are reported for sampling-based methods.

computational cost of SPAR-UGW becomes more considerable
for the indecomposable ¢ loss, it still computes much faster than
the classical EUGW and PGA-UGW methods.

6.1.2. Sensitivity Analysis

We now show that our method is robust to hyperparameters by
analyzing its sensitivity to the subsample size s and the regular-
ization parameter €. Specifically, for synthetic datasets with fixed
sample size n = 200, the hyperparameters are considered among
se{21,2%,...,2°Y x nand e € {5%,571,...,57%}.

From the results in Figure 4, we find that a large number
of selected elements s and/or a small value of ¢ is associated
with a small GW distance estimation and a long CPU time.
Such a finding is consistent with our theoretical results. We also
observe that SPAR-GW can yield a satisfactory estimation for
a large range of hyperparameters. More precisely, as long as
s = O(n) and ¢ is not too large, the estimated GW distance
is approximately in the same order, which implies SPAR-GW is
not sensitive to hyperparameters and can cover a wide range of
tradeoffs between accuracy and speed. This observation sup-
ports the key assumption that only a few important elements
in kernel and coupling matrices are required to approximate
the GW distance effectively. Moreover, our method is largely
free from numerical instability because € need not be extremely
small, which is in good agreement with the statements in Xie
et al. (2020) and Xu et al. (2019).

6.2. Real-World Applications

We consider two applications, graph clustering and graph
classification, to demonstrate the effectiveness of our method
in applications. Six widely-used benchmark datasets are con-
sidered: BZR, COX2 (Sutherland, O’brien, and Weaver 2003),
CUNEIFORM (Kriege et al. 2018), SYNTHETIC (Feragen et al.

2013) with vector node attributes; FIRSTMM_DB (Neumann
et al. 2013) with discrete attributes; and IMDB-B (Yanardag
and Vishwanathan 2015) with no attributes. All these datasets
are available in PyTorch Geometric library (Fey and Lenssen
2019). Given N graphs, we first compute the pairwise GW
distance matrix D € RN*¥ and then construct the similarity
matrix S exp(—D/y) for y > 0. For methods that can
directly extend to approximate the fused GW (FGW) distance,
including EGW, PGA-GW, EMD-GW, SaGroW, and SPAR-GW,
we obtain the pairwise FGW distance matrix when the graphs
have attributes. We set the tradeoff parameter = 0.6. Empirical
results show the performance is not sensitive to . For the graph
clustering task, we apply spectral clustering to the similarity
matrix. We replicate the experiment 10 times with different
random initialization and assess the clustering performance by
average Rand index (RI) (Rand 1971). For the classification task,
we train a classifier based on kernel SVM using the similarity
matrix and test the classifier via nested 10-fold cross-validation
following Titouan et al. (2019a). The performance is evaluated
by average classification accuracy. To examine the effect of
different loss functions, we consider both £; loss and £, loss
for AE, SaGroW, and SPaAR-GW. Other methods are mainly
designed for the decomposable loss, and thus only the £, loss
is implemented. For all methods, y is cross validated within
{2710,279, .., 210}, Other settings are the same as those in the
previous section.

Tables 2 and 3 report the average RI and average classi-
fication accuracy with the corresponding standard deviation,
respectively. PGA-GW and EMD-GW are excluded for clarity
as their results are similar to EGW. Sliced GW and FlowAlign
are also not included since they cannot handle graphs. From
Tables 2 and 3, we observe the proposed SPAR-GW approach is
superior or at least comparable to other methods in all cases.
We also observe the SPAR-GW with ¢; cost almost consistently
outperforms the one with ¢, cost. This observation is consistent
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Figure 4. Impact of the subsample size s and the regularization parameter ¢ for Spar-GW on the GW distance estimation (panel (a)) and computational time (panel (b)).

The mean over 10 runs are reported.

Table 2. Comparison on clustering performance w.r.t. Rl (%).

Dataset SYNTHETIC BZR Cuneiform COX2 FIRSTMM_DB IMDB-B
#graphs: N 300 405 267 467 41 1000
Ave. # nodes: n 100.00 35.75 21.27 41.22 1377.27 19.77
Subsample size: s 2 xn 2B xn 2 xn 2B xn 27 xn 2B xn
EGW 100.00_ ¢ oo 67.1810.44 94.90_9 03 64.811058 92.511915 50.79+10.00
S-GWL 100.00-.0 00 66.84.10.73 94.3249,07 65.0210.23 814241016 51.30 000
LR-GW 50.1310.02 65341431 26.47 1057 64.99.10.10 45934314 51.54 001
AE (€3 loss) 50.17 10,59 67.0410.00 82.514324 62.3610,03 84.6310.00 50.79+0.03
AE (¢4 loss) 50.17 4059 67.0410.00 82.64.4327 62.360.00 84.6710.11 50.7940.03
SaGroW (£; loss) 52411000 67.2410.26 94.5610.20 65.94_ 09> 92.07 10,00 50.4510.00
SaGroW (51 loss) 54.1 5:&0'19 67-33i0.47 94.5410‘14 65.97:&1.03 92~09i0.35 50.45:&0'00
Spar-GW (¢ loss) 98.6710.00 68.22 00 94.66_( 05 65.5410.00 92.24 39 50.82_000
Spar-GW (¢1 loss) 98.67 10,00 68.22_ (00 94.64 006 66.29.1 09 92.41. (33 50.82_ 000

* The top-3 results of each dataset are in bold, and the best result is in italics.

with the observation in Kerdoncuff, Emonet, and Sebban (2021),
which stated that the £; cost tends to yield better performance
than the £, cost in graphical data analysis. Such observation also
justifies the essence of developing a computational tool that can
handle arbitrary ground costs in GW distance approximation.

Considering the CPU time, SPAR-GW computes much faster
than EGW, S-GWL, and AE when the number of nodes is
relatively large. Take the FIRSTMM_DB dataset as an example,
in which each graph has an average of 1,377 nodes, the average
CPU time for these methods are 414.82s (EGW), 1059.95s



Table 3. Comparison on classification performance w.r.t. accuracy (%).
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Dataset SYNTHETIC BZR Cuneiform COX2 FIRSTMM_DB IMDB-B

EGW 100.00_0 0o 85.92_ (50 25.66.) 01 80.211¢ 59 53.75174 66.0110.64
S-GWL 100.00 oo 87.67 .41 9.0541.13 78.231022 17.5044.03 64.54_ 055
LR-GW 55.831146 79124034 3.77 1046 78.06+0.20 15254305 58471035
AE (¢; loss) 43471118 81.48.0.20 4901067 78114019 10.0043.49 62.98.10.40
AE (Z] loss) 44,7311 69 81 .6510,34 5~28i0.60 78.19i0'25 14~50i3.72 63.54:&0'49
SaGroW (£; loss) 66.3311.52 79.47 1032 17.8441.43 78.064037 47.50+4.10 67.40_( 37
SaGroW (£ loss) 68.971131 80.1710.76 16.98.11.44 78.27 1054 50.0047 79 67.69_( 55
Spar-GW (€5 loss) 98.7940.16 83.6510.22 18.8710.99 78.92_ ¢ 11 54.25.3 17 66.70-0.46
Spar-GW (¢4 loss) 99.00. 07> 84.19. 033 22.26. 135 78.49 69 62.5043 37 67.00.0.41

* The top-3 results of each dataset are in bold, and the best result is in italics.

(S-GWL), 22.41s (LR-GW), 501.06s/530.12s (AE under ¢,
loss/£1 loss), 196.18s/189.57s (SaGroW under £, loss/£; loss),
and 82.45s/147.33s (SPAR-GW under ¢, loss/£; loss). Such
results indicate that SPAR-GW achieves a decent tradeoff
between speed and accuracy.

7. Conclusion

We developed a novel importance sparsification strategy,
achieving the approximation of GW, FGW, and UGW distances
in a unified framework with theoretical convergence guarantees.
Experiments show that our SPAR-GW method outperforms
state-of-the-art approaches in various tasks and attains a decent
accuracy-speed tradeoft.

We plan to further investigate the theoretical properties of
the specific proposed sampling probability, and we are also inter-
ested in theoretically deriving the optimal sampling probability.
The proposed importance sparsification mechanism can also be
applied to more complex OT problems, for example, the multi-
marginal optimal transport problem. Further methodological
and theoretical analyses are left to our future work.

Supplementary Materials

Appendix: contains the importance sparsification algorithm for approx-
imating the fused Gromov-Wasserstein distance; complete proofs of
theoretical results; and additional experiments to evaluate the approxi-
mation accuracy, time cost, and memory consumption of the proposed
method. (appendix.pdf, a pdf file)

Code: contains Python code that implements the proposed method and
reproduces the numerical results. A readme file is included describing
the contents. (code.zip, a zip file)
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